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Abstract: The design of a planner for time-optimal trajectories with constraints on velocity,
acceleration, jerk, . . . , is translated into a regulation problem for a chain of integrators with
saturations not only in the input but also in all the internal (state) variables. Then the problem
is solved by designing a regulator, based on the variable structure control, able to steer the
state vector to the origin in minimum time, being compliant with all the constraints. For this
purpose, a modular structure with a cascade of controllers, each one devoted to the regulation
to the origin of a specific component of the state vector, is demonstrated to be effective and
ideally suitable to cope with systems of any order. Analytical examples are provided for filters
of first, second and third order.
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1. INTRODUCTION

The planning of time-optimal trajectories subject to kine-
matic constraints has been faced in a number of works,
leading to both offline algorithms for the computation
of trajectories typically based on dynamic programming,
Shin and Mckay [1986], Singh and Leu [1987] or other
different optimization methods, Bobrow et al. [1985], Lee
and Lee [1997], and to on-line planners, able to compute
in real-time the trajectory once that the desired final
configuration (position, velocity, etc.) has been specified,
Lo Bianco et al. [2000], Zanasi and Morselli [2002].
In particular, in Lo Bianco et al. [2000] a second order filter
is proposed, able to generate trajectories with continuity of
position and velocity profiles and with a discontinuous but
limited acceleration, while in Zanasi and Morselli [2002]
a filter of third order is built with the purpose of on-
line planning trajectories continuous in position, velocity
and acceleration (and with limited jerk). In this work
the approach based on variable structure control with the
computation of the sliding surface by backward integration
(already applied in Lo Bianco et al. [2000], Zanasi and
Morselli [2002]) is combined with a cascade structure of the
controllers which provides a clear interpretation of the final
controller and allows an immediate (although computa-
tionally complex) extension to filters of order higher than
three. This means that, following the proposed approach,
it is possible to design filters providing as output trajec-
tories with an higher degree of smoothness (i.e. degree of
continuity of the derivatives of the position profile), which
in some applications may be necessary in order to avoid
undesired effects, such as vibrations, see Lambrechts et al.
[2005], Barre et al. [2005].

2. PROBLEM FORMULATION

The dynamic nonlinear filter of n-th order proposed in
this paper, and shown in Fig. 1, generates on-line a time
optimal trajectory x(t) that tracks at best the reference
signal r(t), satisfying desired constraints on the first n
derivatives of x(t), i.e.

xi ≤ xi(t) ≤ xi, i = 1, . . . , n (1)

where xi(t) = x(n−i)(t) =
dn−ix(t)

dtn−i
, i = 1, . . . , n. Note

that the constant parameters xi < 0, xi > 0 are in general
not symmetric, that is xi 6= −xi. Moreover, they can
sometimes modified on-line.
The reference signal r(t) is generally given by a first rough
trajectory generator providing for instance piece-wise con-
stant profiles according to the task to be performed, or it
is the result of an external input, such as the commands
of a human operator. Obviously, the signal r(t) can be
actually tracked only if it is compliant with the constraints
(1). Additionally, the hypothesis that the n-th derivative
of r(t) is null, i.e. r(n)(t) ≡ 0, is assumed.
The filter is composed by a chain of n integrators and by
a nonlinear controller able to nullify the tracking error in
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Fig. 1. Structure of a generic trajectory filter of n-th order.



minimum time, being compliant with the above mentioned
constraints. Therefore, given the system
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ẋ1 = u

ẋ2 = x1

...
ẋn = xn−1

(2)

or, with a more compact notation,

ẋ = Ax + Bu (3)

with the state vector x = [x1, x2, . . . , xn−1, xn]T =
[x(n−1), x(n−2), . . . , x(1), x]T , and the matrices
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


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we define the tracking error as y = x − r, where r =
[r1, r2, . . . , rn−1, rn]T = [r(n−1), r(n−2), . . . , r(1), r]T . Be-
cause of the hypothesis r(n)(t) ≡ 0, the dynamics of the
error variable is equal to (3), i.e.

ẏ = Ay + Bu. (4)

The aim of the controller C is therefore to steer the vector
y = [y1, y2, . . . , yn−1, yn]T to the origin, guaranteeing
that for any value of the time t

y
i
(t) ≤ yi(t) ≤ yi(t), i = 1, . . . , n − 1 (5)

where the limit values are computed as

y
i
(t) = xi − ri(t), yi(t) = xi − ri(t)

and therefore they are not constant since they depend on
the reference input r(t). It is worth noticing that because
the input signal and its derivatives are compliant with
constraints (1), i.e. xi ≤ ri(t) ≤ xi, i = 1. . . . , n, the limits
on yi are such that y

i
(t) ≤ 0 and yi(t) ≥ 0, i = 1. . . . , n, ∀t.

Moreover, the additional constraint on the control action

y
0

= x0 ≤ u(t) ≤ x0 = y0 (6)

is assumed.
The regulation of (4) with a saturation on the control
action, as in (6), has been coped and solved in different
ways, see Teel [1992], Marchand and Hably [2005]. In
particular, the time-optimal control of (4) is described in
many textbooks on optimal control theory (at least for
n = 2 and n = 3), see for instance Lee and Markus
[1967] among many others. In this work, the chain of
integrators must be regulated to zero by taking into
account constraints not only on the control action u(t) but
also on all the intermediate variables yi(t). The solution
has been found in designing a nonlinear controller obtained
by nesting n controllers, each one devoted to nullify
a specific element of the error vector y in minimum
time. According to this design philosophy, the third order
controller is built over the second order filter which is
based on the first order filter. This structure can be
easily iterated in order to obtain higher order trajectory
generators.

3. CONTROLLERS DESIGN

All the controllers have the same general structure, illus-
trated in Fig. 2: the i-th controller acts on the control
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Fig. 2. Structure of the i-th control loop (S0 = 1).

variable ui ∈ { xi−1, 0, xi−1} to steer the state vector

xi = [x1, . . . , xi]
T to ri = [ri,1, . . . , ri,i]

T . Note that, the
input vector ri of the system Si−1 is of length i. Accord-
ingly the controller Ci must generate a control output
of the same size. In particular, the output of the i-th
controller will be ui = [0, . . . , 0, ui]

T where the term ui is
piecewise constant and accordingly its derivatives are null.
In the following sections, with a little abuse of notation the
output of the generic i-th controller is simple denoted by
the scalar ui. Moreover, for the sake of simplicity, in the
generic section devoted to the filter of i-th order both the
variables ri,k and yi,k = xi−ri,k, k = 1, . . . , i, components
of ri and yi respectively, are simply denoted with rk and
yk = xi − rk. However it is necessary to remember that
r1 or y1 related to the first order filter are different from
those defined for second or third order filters.

3.1 First order filter

Proposition 1. Given the system

ẋ1 = u

composed by a single integrator, the control law

C1 : u1(r1, x1) =











x0, if y1 < 0

0, if y1 = 0

x0, if y1 > 0

(7)

satisfies the constraint x0 ≤ x0(t) ≤ x0 (with x0(t) =
u(t) = ẋ1(t)) and forces the state variable x1 to reach the
value x1 = r1 (r1 constant) in minimum time.

Proof. The control signal is bounded by definition and
therefore the variable x0, related to x1 by ẋ0 = x1, is x0 ≤
x0(t) ≤ x0. The error variable y1 = x1 − r1 is considered,
whose dynamics is described by ẏ1 = u. By applying
the constant control u1(t) = û1 (û1 = x0, if y1 < 0 or

û1 = x1, if y1 > 0), the tracking error y1(t) =
∫ t

t0
u(t)dt =

û1(t− t0)+y10
tends to the origin at the maximum speed.

When y1 equals 0, the control action switches and becomes
u1(t) = 0.

Remark 2. By defining a special type of inverse sign func-
tion, i.e.

ISgn(x, x, ξ) =











x, ξ > 0

0, ξ = 0

x, ξ < 0.

the definition of the controller C1 in (7) becomes

u1(r1, x1) = ISgn(x0, x0, y1).



3.2 Second order filter

The first order controller is now exploited to design a
second order filter able to steer the state vector [x1, x2]

T

to the desired values [r1, r2]
T .

Proposition 3. Given the second order system composed
by a cascade of two integrators and by the controller C1:

{

ẋ1 =u1(u2, x1)

ẋ2 =x1

(8)

where u2 is the new control input, the control law

C2 : u2(r2,x2) =











x1, if y2 < h2(y1) or y2 = h−

2 (y1)

0, if y2 = y1 = 0

x1, if y2 > h2(y1) or y2 = h+
2 (y1)

(9)
with

h2(y1) =























h−

2 (y1) =
y2
1

2x0
, if y1 < 0

0, if y1 = 0

h+
2 (y1) =

y2
1

2x0

, if y1 > 0

(10)

satisfies the constraint x1 ≤ x1(t) ≤ x1 (and obviously
x0 ≤ x0(t) ≤ x0) and forces the variable x2 to reach the
value r2 (and x1 the desired value r1) in minimum time.

Proof. Since the second order filter is based on (7) the
bounds on x0(t) are automatically guaranteed, while the
compliance with the constraints on x1(t) is assured by
the fact that the controller (9) provides a control output
u2 ∈ [x1, x1] used as reference signal by the inner control
loop which guarantees that such a value is never exceeded.
We consider the dynamics of the error variables y1 = x1 −
r1, y2 = x2 − r2, that, because of the relationship between
r1(t) and r2(t), i.e. ṙ2(t) = r1(t), and the hypothesis
ṙ1(t) = 0, becomes

{

ẏ1 =u1(u2, y1 + r1)

ẏ2 =y1.
(11)

The controller C2 should ideally steer the error to the
origin by means of two arcs of trajectory obtained with
u2(t) = x1 or u2(t) = x1 according to the initial conditions
[y10

, y20
]T , and then u2(t) = r1(t). In this way, the

controller firstly applies an extremal control value in order
to nullify the error variable y2 in the fastest way, then
it “brakes” by imposing u2(t) = r1(t) with the purpose
of stopping exactly on y2 = 0. At the end of this second
phase, the inner controller C1 must assure that x1−r1 = y1

is equal to zero. In this manner at the end of motion the
state y2 = [y1, y2]

T is exactly on 0. By representing the
system trajectories in the phase plane, it is straightforward
to compute the switching locus, i.e. the curve y2 = h2(y1)
of the phase plane where the control action must change.
This curve can be obtained by backward integrating the
system dynamics (11), composed by the filter S1 and an
additional integrator, from the origin by considering a step
input u2 of generic magnitude û2. When the input û2 is
applied to C1, it provides a constant control action u1 = û1

(û1 = x0 or û1 = x0) that aims at reducing the error
x1 − û2. As a consequence the state of the system for
−t1 ≤ t ≤ t0 = 0 is

y2

y1

y1

y
1

h+
2

h−

2

R

R

Fig. 3. Phase portrait of the second order filter.

y2 =

[

y1

y2

]

=





−û1t

û1t
2

2



 . (12)

Eliminating the parameter t from (12), one obtain the
explicit expression of the trajectory passing through the
origin 1 , that is

y2 =
y2
1

2û1
. (13)

The value of û1 in (12) and (13) depends on the reference
signal applied to C1 which coincides with the control û2

provided by C2, and therefore with r1, being (13) the last
tract of the trajectory.
If x1 − û2 = x1 − r1 < 0 then the control action provided
by C1 is û1 = x0, and the state y2 goes to the origin

along the curve y2 = h−

2 (y1) =
y2

1

2x0

. Conversely if x1 −
û2 = x1 − r1 > 0 the control action provided by C1 is
û1 = x0 and the trajectory passing through the origin is

y2 = h+
2 (y1) =

y2

1

2x
0

.

In this manner, as shown in Fig. 3 where some system
trajectories for different initial conditions are reported, the
phase space is split into two parts by the switching curve:

• in R the controller composed by the cascade of C2

and C1 steers the system state towards y2 = h−

2 (y1)
or y2 = y

1
and then to the origin;

• in R the controller steers the system state towards
y2 = h+

2 (y1) or y2 = y1 and then to the origin.

The system is therefore globally stable. Note that accord-
ing to the definition reported in (9), the controller C2 does
not apply the ideal control sequence

u2 = x1 or x1
switch
−−−−→ r1

but imposes the same ideal dynamics by constraining the
state y2 on the curve y2 = h2(y1) by applying a switching
control action.

Remark 4. The controller C2, defined by (9), can be ex-
pressed with a more compact notation as

1 The equation (13) is a particular case of the generic trajectory
passing trough the point (y10

, y20
), whose expression is

y2 = h2(y1, y10
, y20

) =
y2
1
− y2

10

2û1

+ y20
, û1 6= 0.

Moreover, similarly to trajectories through the origin, it is possible to
define generic trajectories obtained for û1 = x0 and û1 = x

0
, which

are denoted with h−

2
(y1, y10

, y20
) and h+

2
(y1, y10

, y20
), respectively.
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Fig. 4. Output of the second order filter with a step
reference input r2, when the bound on x1 is reached
(a) and not reached (b).

x0 ← acc. (a) x1 ← vel. (v)
x2 ← pos.
x
0
← amin x0 ← amax

x
1
← vmin x1 ← vmax

Table 1. Symbols for the definition of the
second order trajectory generator.

u2(r2,x2) = ISgn2

(

x1, x1, y2 − h2(y1), y1

)

where

ISgn2(x, x, ξ1, ξ2) =

{

ISgn(x, x, ξ1), ξ1 6= 0

ISgn(x, x, ξ2), ξ1 = 0.

The response of the second order system to a constant
reference input r2 (r1 = ṙ2 = 0) is reported in Fig. 4.(a)
and Fig. 4.(b). Note that, when the limit values of x1 are
reached, as in Fig. 4.(a), the control action u(t) = x0(t)
switches two times, from x0 to 0, and then from 0 to x0,
or viceversa. Conversely if x1 or x1 are not reached the
control u(t) directly switches from x0 to x0 or viceversa,
see Fig. 4.(b).
The second order system can be adopted as second order
position trajectory generator with constraints on speed
and acceleration: in this case it is sufficient to consider the
substitutions of Tab. 1. The filter designed in this manner
can be used to plan on-line time-optimal trajectories with
continuous velocity and bounded acceleration which track
at best an external reference signal.

3.3 Third order filter

In order to define the third order filter, the outer controller
C3 is defined.

Proposition 5. Given the third order system composed by
a cascade of three integrators and by the controllers C1

and C2:










ẋ1 = u2(u1(u3, u̇3, x2, x1), x1)

ẋ2 = x1

ẋ3 = x2

where u3 and u̇3 are the new control inputs, the control
law C3:

u3(r3,x3) =











x2, if y3 < h3(y2, y1) or y2 = h−

3 (y2, y1)

0, if y3 = y2 = y1 = 0

x2, if y3 > h3(y2, y1) or y2 = h+
3 (y2, y1)

(14)
with

h3(y1, y2) =















h−

3 (y1, y2) if y2 < h2(y1) or y2 = h−

2 (y1)

0 if y2 = y1 = 0

h+
3 (y1, y2)) if y2 > h2(y1) or y2 = h+

2 (y1)
(15)

where h−

3 and h+
3 are defined by (16) and (17) respectively,

satisfies the constraint x2 ≤ x2(t) ≤ x2 (and obviously
x1 ≤ x1(t) ≤ x1 and x0 ≤ x0(t) ≤ x0) and forces the
vector x3 to reach the desired value x3 = r3 in minimum
time.

Proof. The constraints on x0(t) and x1(t) are automati-
cally guaranteed by the inner controllers C1 and C2, while
the compliance with the bounds on the x3(t) descends from
the fact that the control signal u3(t), which is the reference
signal for C2, always ranges in [x2, x2]. The philosophy and
the structure of the controller C3 are the same of the inner
controller C2. By considering the dynamics of the error
variables y3 = [y1, y2, y3]

T :










ẏ1 = u2(u1(u3, u̇3, y2 + r2, y1 + r1), y1 + r1)

ẏ2 = y1

ẏ3 = y2

(18)

the controller is built with the purpose of regulating in
minimum time the last component of the vector y3, i.e. y3,
and requiring the internal control loops to nullify the other
components. Analogously to C2, this can be accomplish,
by steering y3 to the origin with two arcs of trajectory: the
former with the constant control u3(t) = x2 or u3(t) = x2
depending on the initial conditions [y10

, y20
, y30

]T and the
latter with u3(t) = r2(t). In this case the switching locus is
a surface in a three dimensional space, that can be built by
considering all the trajectories passing through the origin
obtained with the generic control u3(t) = r2(t). Such
trajectories can be computed by backward integrating
the error dynamics (18) with a generic input r2(t). It is
therefore necessary to study the behavior of the system
composed by the cascade of second order filter S2 and the
additional integrator. When r2(t) is given to the system
S2, the control action u(t) directly applied to the chain
of integrators is a sequence of constant value segments,
see Fig. 4. In particular, as highlighted in Sec. 3.2, two
different situations may occur:

(1) while the output x2(t) of the system S2 tends to the
desired value r2(t) in minimum time, the variable
x1(t) reaches the boundary limit x1 or x1: in this case
the control sequence is u(t) = û2 → 0 → û1, where
(û1, û2) = (x0, x0) or (û1, û2) = (x0, x0), depending
on the initial value of the state y3 and, in particular,
of the two components regulated by controllers C1

and C2, i.e. y1 and y2;
(2) the variable x2(t) equals r2(t) but the limits x1 or x1

are never reached: in this case the control u(t) applied
to the chain of integrators directly switches from û2 to
û1 without the intermediate segment with u(t) = 0.
Also in this case the values (û1, û2) correspond to



h−

3
(y2, y1) =



















y4
1
x2
0

+ ((y1 − y1)3(3y1 + y1)− 12(y1 − y1)2y2x0 + 12y2
2
x2
0
)x2

0

24y1x2
0
x2
0

, if y2 > h
−

2
(y1, y

1
, h2(y

1
))

2y1y2x
0
(x

0
− x0)x0 + (y2

1
− 2y2x0)(

√

(y2
1
− 2y2x0)x

0
(x

0
− x0)(−2x

0
+ x0)− 2y1x

0
(x

0
− x0))

6x
0
(x

0
− x0)x2

0

, otherwise

(16)

h+

3
(y2, y3) =



















y4

1
x2
0

+ ((y1 − y
1
)3(3y1 + y

1
)− 12(y1 − y

1
)2y2x

0
+ 12y2

2
x2
0
)x2

0

24y
1
x2
0
x2
0

, if y2 < h+

2
(y1, y1, h2(y1))

2y1y2x
0
(x

0
− x0)x0 + (y2

1
− 2y2x

0
)(
√

−(y2
1
− 2y2x

0
)x0(x

0
− x0)(2x0 − x

0
)− 2y1x0(x

0
− x0))

6x0(x
0
− x0)x2

0

, otherwise

(17)

(x0, x0), or (x0, x0), according to the initial value of
y1 and y2.

In order to build the switching surface we start from the
simpler case (2). The trajectory of y3 can be computed
by backward integrating from the origin the dynamics of
the chain of three integrators fed by an input sequence
composed by a segment of duration −t1 with u(t) = û1

followed by a segment of duration −t2 with u(t) = û2:

y3 =











y1

y2

y3











=













−t1û1 − t2û2

t1(t1 + 2t2)û1 + t22û2

2
−t1(t

2
1 + 3t1t2 + 3t22)û1 − t32û2

6













. (19)

Eliminating the parameters t1 and t2 from (19), one
obtains the explicit expression of the trajectory:

y3 =
1

6û1(û1 − û2)û2
2

[

2y1y2û1(û1 − û2)û2 +

+(y2
1 − 2y2û1)

(

√

(y2
1 − 2y2û1)û1(û1 − û2)

(−2û1 + û2) − 2y1û1(û1 − û2)
)

]

. (20)

The expression of the trajectory (20) is valid if the limit
values of y1 (ore equivalently, the limit values of x1)
are not reached. Otherwise (case (1)), it is necessary to
compute the trajectory in a different way. In particular,
as shown in Fig. 5, the regions R and R are both
split in two sub-regions, with subscript s (saturated)
and ns (not saturated) according to the fact that y1 or
y
1

is reached or not. The limit trajectory (dividing Rs

and Rns ) is the one passing exactly through the point
(ŷ1, ŷ2) =

(

y1, h2(y1)
)

or (ŷ1, ŷ2) =
(

y
1
, h2(y1

)
)

and has

the expression y2 = h−

2

(

y1, y1, h2(y1)
)

, if (y1, y2) ∈ R or

y2 = h+
2

(

y1, y1
, h2(y1

)
)

, otherwise.

In case (1), that occurs if the projection of the trajectory
of y3 on the plane y3 = 0 lies on Rs, it is necessary to
backward integrate from the origin the dynamics of the
integrators chain with an input sequence composed by
a segment of duration −t1 with u(t) = û1, followed by
a segment of duration −t2 with u(t) = 0 and finally a
segment of duration −t3 with u(t) = û2:











y1

y2

y3











=













−t1û1 − t3û2

t1(t1 + 2(t2 + t3))û1 + t23û2

2
−t1(t

2
1 + 3t1(t2 + t3) + 3(t2 + t3)

2)û1 − t33û2

6













(21)

(

y1, h2(y1)
)

(

y
1
, h2(y1

)
)

h+
2

h−

2

h2

h+
2 (·, y

1
, h2(y1

))

h−

2 (·, y1, h2(y1))

y2

y1

y1

y
1

Rs

Rs

Rns

Rns

Fig. 5. Phase portrait of the second order filter S2 with the
regions corresponding to different control sequences.

with a further constraint tied to the limits on y1 (x1):

−t1 =
ŷ1

û1
(22)

Note that the substitution of (22) in (21) is equivalent to
backward integrate the system dynamics from ŷ1 instead
of the origin with an input composed by two tracts: the
former of duration −t2 with u(t) = 0 and the latter of
duration −t3 with u(t) = û2.
Finally, the expression of the surface obtained by elimi-
nating the parameters t1, t2 and t3 from (21) and (22)
results

y3 =
1

24ŷ1û
2
1û

2
2

(

ŷ4
1 û2

2 + ((y1 − ŷ1)
3(3y1 + ŷ1) −

−12(y1 − ŷ1)
2y2û2 + 12y2

2 û2
2)û

2
1

)

(23)

with (û1, û2, ŷ1) = (x0, x0, y1) if the projection of the tra-
jectory on the plane y3 = 0 starts in Rs and (û1, û2, ŷ1) =
(x0, x0, y1

) if it starts in Rs.

The complete switching surface y3 = h3(y1, y2) is obtained
by combining (20) and (23), with the proper values of û1

and û2.
Similarly to the controller C2, C3 does not apply the ideal
control sequence

u3(t) = x2 or x2
switch
−−−−→ r2

but imposes the same ideal dynamics by forcing the state
y on the surface y3 = h3(y1, y2) by applying a switching
control action. When the trajectory hits this surface the
controller C2 steers the trajectory towards the curve whose
projection on the plane y3 = 0 is y2 = h2(y1) and finally



y3

y2

y1

y1

y
1

y2

R3

R3

y3

y2

y1

y1

y
1

R3

R3

(a) (b)

Fig. 6. Trajectories of the error variable y3 with the
controller C3 in case that the maximum value of x2 is
reached (a) and not reached (b).

x0 ← jerk (j) x1 ← acc. (a)
x2 ← vel.(v) x3 ← pos.
x
0
← j

min
x0 ← j

max

x
1
← amin x1 ← amax

x
2
← vmin x2 ← vmax

Table 2. Symbols for the definition of the third
order trajectory generator.

the trajectory moves along this curve until the origin is
reached. Therefore, the overall control is globally stable.

Remark 6. The controller C3, defined by (9), can be ex-
pressed with a more compact notation as

u3(r3,x3) = ISgn3

(

x2, x2, y3 − h3(y1, y2), y2 − h2(y1), y1

)

where

ISgn3(x, x, ξ1, ξ2, ξ3) =











ISgn(x, x, ξ1), ξ1 6= 0

ISgn(x, x, ξ2), ξ1 = 0, ξ2 6= 0

ISgn(x, x, ξ3), ξ1 = 0, ξ2 = 0.

The figure 6 shows the trajectories of y3 when a step
reference input is applied to the filter and two different
situations occur: in Fig. 6.(a) the limit value of y2 is
reached before the trajectory hits the switching surface,
while in Fig. 6.(b) this does not happen. The correspond-
ing profiles of [x1, x2, x3]

T are reported in Fig. 7. Note
that in this case the filter used as trajectory generator
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Fig. 7. Output of the third order filter with a step reference
input r3 corresponding to the trajectories of the error
dynamics of Fig. 6.

(with the substitutions reported in Tab. 2), guarantees the
continuity of velocity, acceleration and also a bounded jerk.

4. CONCLUSIONS

In this paper the design of a filter for on-line trajectory
generation with constraints on velocity, acceleration and
jerk has been translated into a regulation problem for a
chain of integrators with bounds in the internal (state)
variables. A nested structure of the controllers based on
variable structure control allows a great simplification of
the design procedures, which are all based on the same con-
cept: regulating to zero the last element of the error vector
yi, leaving the task of nullifying the other components to
the inner control loops. This modular structure is partic-
ularly suitable for considering filters of order higher than
three. The possibility of extending the proposed approach
to systems of higher order is strictly related to the capa-
bility of computing the switching surface, and therefore to
the capability of solve systems of polynomial equations.
With respect to this problem it is worth noticing that in
the literature some techniques aiming at systematize the
calculations have been proposed, see Walther et al. [2001].
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